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ABSTRACT: The concentration dependence of the conformations of ring
polymers is investigated by lattice Monte Carlo simulations and compared with
that of linear polymers. The relative radii of gyration of linear polymers follow a
universal master curve as a function of the scaled concentration for various
chain lengths, with a scaling relationship ⟨Rg

2⟩ ∼ ϕ−0.25, which is consistent with
scaling theory and neutron scattering experiments. Ring polymers of different
lengths also follow a universal behavior with a broad crossover to a scaling
behavior ⟨Rg

2⟩ ∼ ϕ−0.59 for long chains. The scaling relationship between the
concentration dependence and the chain-length dependence of the radius of
gyration implies ⟨Rg

2⟩ ∼ N0.72, indicating highly collapsed conformations for
long-chain ring polymers in the melt.

DNA is often found in the form of a ring in nature;
plasmids in bacteria, mitochondrial DNA in eukaryotic

cells, and DNA in λ phages have a circular form, for example.1

The existence of long DNA of a meter size in a micrometer-size
cell nucleus raises an intriguing question on how they are
packed and sustained in a collapsed state.2 In higher eukaryotic
cells such as mammalian cells, chromosomes are highly
compressed in the cell nucleus, not mixed together, and
occupy a spatially limited region.3 Recently, the visual
conformation of chromosome territories was proposed to be
analogous to that of ring polymers in melts.4 In this regard, it is
now well demonstrated that unknotted and nonconcatenated
pure ring polymers in concentrated solutions or melts show
markedly different conformations and dynamics as compared
with linear polymers due to strong topological constraints.5−12

However, the detailed understanding of both conformations
and dynamics of ring polymers in concentrated solutions or
melts are still lacking. Moreover, further studies of ring
polymers are needed to provide a detailed understanding of
more complicated systems such as knotted or concatenated ring
polymers13−16 and blends of linear and ring polymers,17,18

which show significantly different physical properties from pure
linear or ring polymer systems.
It is well known that linear polymers in concentrated

solutions or melts approach an ideal Gaussian coil due to the
balance of inter- and intramolecular excluded-volume inter-
actions.19−21 In dilute solutions of good solvents, the dominant
contribution of the volume repulsion induces a swelling of
polymers. For linear polymers, the transition from a swollen to
an unperturbed Gaussian coil above the overlap concentration
was shown by scaling theory, computer simulations, and

neutron scattering experiments to follow a scaling behavior of
the mean-square radius of gyration ⟨Rg

2⟩ ∼ ϕ−0.25 as a function
of polymer concentration ϕ.21−24

On the other hand, ring polymers exhibit collapsed
conformations quite different from an unperturbed Gaussian
coil in concentrated solutions or melts, while it is a swollen coil
in dilute solutions of good solvents just like linear
polymers.25,26 The precise nature of collapsed conformations
of rings in melts is still debated,9,27−35 because the preparation
of unknotted and nonconcatenated pure ring polymers of high
molecular weights is a very challenging experimental task6−10

and a huge computational time is required to fully simulate
long-chain ring polymers.32,36−38

In this letter, the conformational changes of ring polymers
with the concentration are studied and compared with the
results for linear chains. The computational necessity to
simulate the long chains within the reasonable simulation-
time window is met by using an efficient lattice-based Monte
Carlo (MC) simulation method.30,36,37

In this coarse-grained polymer model, repeating chemical
units are replaced by a bead occupying a single site on a three-
dimensional cubic lattice. Two nearest-neighbor beads are
linked to form a bond, and a polymer chain consists of N beads,
which correspond to the chain length. The system is filled with
Nch chains, in the periodic boundary conditions, which gives the
density ϕ = N·Nch/V, where V = L3 and L is the length of the
cubic simulation box. The movement of ring polymers consists
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of three kinds of motion comprised of the wedge-flip motion,
the kink-rotation motion, and the kink-diffusion motion. The
movement of linear polymers is the same as for the rings except
that the end-bond motion replaces the wedge-flip motion at the
chain ends. The kink-diffusion motion as a nonlocal movement
has the advantage to speed up the relaxation time of polymers
and reduce the computational time.30,36,37 The excluded-
volume effect, which is the condition that two distinct beads
are forbidden to occupy the same lattice site, is imposed to
ensure the topological constraints, not allowing the bond
crossings between the chain segments and retaining the
unknotted and nonconcatenated conformations as constructed
from the initial configurations. The simulation time is given in
units of attempted Monte Carlo steps (MCS) per bead in the
simulation; that is, Nch × N of the attempted moves constitute
one MCS and the lattice spacing is unity. The wedge-flip, the
kink-rotation, and the kink-diffusion motions are performed
with the probability 1/4, 1/4, and 1/2, respectively. The
systems are fully equilibrated by executing more than τ ∼
(108) MCS, including the kink-diffusion motion. During that

time, the center of mass of polymer chains moves the distance
of approximately four times of Rg even for the longest chain
with N = 5000. The simulation box size L is approximately
three times that of Rg to avoid the periodic boundary artifacts.
The entanglement length of the simulated linear chain is
approximately Ne ≈ 132 at the density ϕ = 0.8.30

The size of linear and ring polymers is characterized by the
mean-square radius of gyration, ⟨Rg

2⟩, as a function of the chain
length N. Figure 1 shows the results for the highest

concentrations (or melts) with ϕ = 0.8. The data are obtained
by time- and ensemble-averaging over Nch chains after the
system is equilibrated by calculating at every 105 MCS until
reaching 108 MCS. The mean-square radius of gyration for
linear polymers scales as ⟨Rg

2⟩ ∼ N1.03±0.02 for N ≥ 700 and that
of ring polymers shows ⟨Rg

2⟩ ∼ N0.72±0.04 for N ≥ 1000. The
recent simulation using the same MC method in the
concentration ϕ = 0.5 shows ⟨Rg

2⟩ ∼ N0.75±0.02 for rings in the
long-chain regime,30 when replotted and critically analyzed.
(Since the value of ν continues to decrease with the
concentration for ring polymers, it is difficult to see how a
collapsed globular state with 2ν = 2/3 can be observed for ϕ =

0.5, as claimed in previous publications.30−33) The scaling
behavior ⟨Rg

2⟩ ∼ N2v of ring polymers exhibits highly collapsed
conformations with 2ν = 0.72, which is smaller than a Gaussian
chain (2ν = 1.0)19−21 or a partially collapsed conformation (2ν
= 0.8) previously reported,27−29 but larger than a crumpled
globule structure (2ν = 2/3)30−33 or a lattice animal with
screened excluded-volume interactions (2ν = 1/2).9,19,34,35

Interestingly, the observed value 2ν = 0.72 is close to 2ν = 0.75
predicted in a certain range of chain lengths for ring
polymers,16 but the predicted transition to 2ν = 8/9 at larger
chain lengths is not indicated by our results in Figure 1. Also,
although the topological constraints are quite different,
branched sponge polymers with screened excluded-volume
interactions are predicted to exhibit 2ν = 11/15;39 this may
imply that complex topological effects in general tend to
significantly shrink the spatial conformations in polymer melts.
In Figure 2a the concentration dependence of the scaling

exponents ν of the relationship ⟨Rg
2⟩ ∼ N2ν are shown as a

function of the polymer concentration ϕ for linear and ring
polymers (for N ≥ 1000). The concentrations are changed
from a very dilute solution ϕ = 0.0015 to a highly concentrated
solution (melt) ϕ = 0.8. For ϕ = 0.0015, the exponents for the
linear and the ring polymer are given by ν = 0.587 ± 0.004 and
0.587 ± 0.001, respectively. The exponent for the linear chains
is consistent with the value, ν = 0.588 ± 0.001 obtained from
the renormalization group theory,20 and the exponent for the
ring polymers is also consistent with previous theories and
simulations.25,26,36,40 The swollen coil conformations of linear
and ring polymers begin to change when the concentration
exceeds the overlap concentration ϕ*. As the concentration
increases, the value of ν for linear polymers reaches a plateau of
ν = 0.5 expected for an ideal Gaussian coil, whereas the ν values
for ring polymers continue to decrease with the concentration
to yield a value ν = 0.36 ± 0.02 for ϕ = 0.8.
The static structure factors of ring polymers with N = 5000

for various concentrations are shown in Figure 2b. The static
structure factor19−21 is given by

∑= ⟨| · | ⟩
=

S q
N

iq r( )
1

exp( )
i

N

i
1

2
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Figure 1. The mean-square radius of gyration ⟨Rg
2⟩ for linear (red) and

ring (black) polymers as a function of the chain length N in melts with
ϕ = 0.8. The linear chain results are fitted by an ideal Gaussian model.
Sample snapshots of linear and ring polymers with N = 5000, viewed
along a short principle axis, are shown in the upper left (red) and the
lower right (blue) corner, respectively.

Figure 2. (a) Variation of the exponent ν versus the concentration ϕ
as determined from the fit ⟨Rg

2⟩ ∼ N2ν. The red circles and the black
squares correspond to the linear and the ring polymers obtained in the
long-chain regime with 1000 ≤ N ≤ 5000. The two blue points for ϕ =
0.8 correspond to the scaling exponents for the long-chain regime
obtained from the results in Figure 1. (b) Static structure factors S(q)
of ring polymers with N = 5000 are shown for various concentrations:
ϕ = 0.0015 (black), 0.03 (red), 0.08 (green), 0.3 (blue), 0.8
(magenta). Two straight lines correspond to the case of ν = 0.588 and
0.36, respectively.
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where q is the scattering vector and ri is the position vector of
the monomers. In the small q regime, the increase in S(q) with
the concentration is consistent with the overall compact
conformation of rings and the development of local loop
structures in high concentrations.10,11,32 In the intermediate q
regime, the self-similar structures are exhibited by displaying
S(q) ∼ q−1/ν scaling behavior.21−23 The variations of observed
S(q) for N = 5000 with the concentration, as expressed by ν
from S(q) ∼ q−1/ν, show a good agreement with the scaling
exponent ν directly calculated from ⟨Rg

2⟩ ∼ N2v at each
concentration.
The relative mean-square radii of gyration ⟨Rg

2⟩/⟨Rg°
2⟩ are

shown in Figure 3 as a function of the scaled concentration ϕ/

ϕ* for various chain lengths. The Rg° is the radius of gyration in
the dilute solutions and ϕ* is the overlap concentration, which
is expected to be comparable with the local concentration
inside a single coil, expressed by ϕ* = 3N/(4π⟨Rg°

2⟩3/2). The
first notable aspect is that all the data points for linear and ring
polymers are superimposed on respective master curves,
represented by ⟨Rg

2⟩/⟨Rg°
2⟩ = (1 + α·ϕ/ϕ*)β with specific

parameters α and β. The linear polymers exhibit the expected
universal scaling behavior ⟨Rg

2⟩/⟨Rg°
2⟩ ∼ (ϕ/ϕ*)−0.25 above 10

times the overlap concentration. This result is in good
agreement with the previous neutron scattering experiment
by Daoud et al.,24 who reported the concentration-scaling
exponent for linear polystyrene chains to be −0.25 ± 0.02, and
also with recent computer simulations.23 Interestingly and
remarkably, all the data points of ring polymers with different
chain lengths are also nicely superimposed on a master curve
with the scaling value β = −0.59 ± 0.01, which is quite different
from the previously reported results for which β ≥ −0.5
(−0.5,12 −0.34,15 and −0.42,16 respectively). This difference is
most likely due to the narrower range of chain lengths and

concentrations in previous studies, as shown by the dashed line
fitted by using fixed β = −0.5. Although this fit may seem
reasonable for ϕ/ϕ* < 10, its shortcomings are clearly seen for
ϕ/ϕ* > 10 corresponding to the high chain lengths and
concentrations that are not included in previous studies.
From this concentration scaling exponent, one can estimate

the scaling behavior of chain-length dependence of radius of
gyration in concentrated solutions. In concentrated solutions,
the radius of gyration scales as Rg ∼ Rg°(ϕ/ϕ*)

m as a function of
the concentration ϕ/ϕ*.19−21 The radius of gyration in dilute
solutions scales as Rg° ∼ Nν0 and the overlap concentration as
ϕ* ∼ N/(Rg°)

3 ∼ N1−3ν0, where ν0 is the scaling exponent in
dilute solutions. By considering the relation, Rg ∼ Rg°(ϕ/ϕ*)

m

∼ Nν in highly concentrated solutions or melts, where ν is the
scaling exponent, the relation between ν and m is given by

ν ν ν= − − m(1 3 )0 0 (2)

Hence, the chain-length exponent ν can be estimated from the
observed concentration exponent of m. By taking ν0 = 0.588
and m = β/2, we get ν ≈ 0.36, which is in good agreement with
the exponent 2ν = 0.72 obtained from the data of Figure 1.
As shown in Figure 3, the ring polymer shows a more

pronounced conformational change with the concentration, as
compared with the linear chains. This conformation change is
also reflected in the overall shape of polymers. The shape
characteristics of linear and ring polymers as a function of the
concentration for N = 5000 is shown in Figure 4. The shape of

polymer may be characterized by the eigenvalues of the radius
of gyration tensor T,36,41−48 which is defined by

∑= − −
=

( )N
x x x xT

1
( )ij

l

N

il i jl j
1 (3)

where xil is the i
th component of the lth bead position vector and

⟨xi⟩ is the i
th component of the polymer center-of-mass position

vector. The eigenvalues of T are the squares of the principal
radii, Li

2 for 1 ≤ i ≤ 3 (L1
2 ≤ L2

2 ≤ L3
2). In the dilute solution

with ϕ = 0.0015, the ratio of ⟨L1
2⟩:⟨L2

2⟩:⟨L3
2⟩ for the linear

polymer gives 1:3.0:13.8, which represents a prolate con-
formation, as expected.48 In highly concentrated solutions or
melts of ϕ = 0.8, the prolate shape of linear polymers is less
extended with the ratio ⟨L1

2⟩:⟨L2
2⟩:⟨L3

2⟩ = 1:2.9:11.2.30,32,43,48

Figure 3. Relative mean-square radii of gyration ⟨Rg
2⟩/⟨Rg°

2⟩ vs the
scaled concentration ϕ/ϕ* for the various chain length N = 400
(magenta), 1000 (blue), 2000 (red), and 5000 (black). The open and
closed symbols correspond to the linear and ring polymers,
respectively. All the data points of the linear and ring polymer are
superimposed on respective master curves, which are shown by green
lines. The scaling behaviors of the long chains are shown with black
straight lines with scaling values. The master curves for linear and ring
polymers are given by ⟨Rg

2⟩/⟨Rg°
2⟩ = (1 + α·ϕ/ϕ*)β, with α = 0.4 and β

= −0.25 for linear chains and α = 0.43 and β = −0.59 for ring
polymers, respectively. The dashed line is fitted by using fixed β =
−0.5 (with α = 0.57) to emphasize the importance of including the
results for the high chain lengths and concentrations.

Figure 4. Eigenvalue ratios ⟨L2
2⟩/⟨L1

2⟩ and ⟨L3
2⟩/⟨L1

2⟩ of the radius of
gyration tensor T as a function of the concentration ϕ for N = 5000.
The red circles and the black squares correspond to the linear and the
ring polymers. The closed and the open symbols stand for ⟨L2

2⟩/⟨L1
2⟩

and ⟨L3
2⟩/⟨L1

2⟩, respectively.
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On the other hand, the ring polymer shows ⟨L1
2⟩:⟨L2

2⟩:⟨L3
2⟩ =

1:2.7:6.9 for ϕ = 0.0015, which is a less extended prolate than
that of a linear polymer, as expected.48 As the concentration
increases, the anisotropy of the ring-polymer shape decreases
overall, and in the melt (ϕ = 0.8), the ring polymer is strongly
collapsed, but the shape still remains prolate with
⟨L1

2⟩:⟨L2
2⟩:⟨L3

2⟩ = 1:2.0:5.2.30,32,43,48

In this study, the conformational properties of ring polymers
as a function of the concentration have been investigated by
using the MC simulation method. The linear chains show a
transition behavior from a swollen coil to an ideal Gaussian coil
with increasing concentration. All the data points of relative
radii of gyration with different chain lengths in terms of scaled
concentrations are nicely superimposed on a master curve,
which gives the experimentally observed scaling behavior, ⟨Rg

2⟩
∼ ϕ−0.25. In comparison, ring polymers also show a swollen coil
conformation in dilute solutions, just like linear polymers, but
they assume a highly collapsed non-Gaussian conformation at
highly concentrated solutions or melts. Remarkably, all the data
points of relative radii of gyration, plotted as a function of
scaled concentrations, are also nicely superimposed on a master
curve with the scaling behavior ⟨Rg

2⟩ ∼ ϕ−0.59. By adopting this
scaling behavior with the concentration for long chains, we
obtain the scaling relation ⟨Rg

2⟩ ∼ N0.72, which is consistent with
the scaling behavior obtained directly from the chain length
dependence in melts. We would like to point out that this
relationship between the exponents of the concentration and of
the chain length dependence suggests an experimentally
feasible way to investigate the conformational properties of
ring polymers. That is, the study of the polymer conformations
as a function of the concentration will provide the dependence
of their conformations on the chain length. Although the ring
polymer is strongly collapsed in melts, the instantaneous shape
still remains quite anisotropic with ⟨L1

2⟩:⟨L2
2⟩:⟨L3

2⟩ = 1:2.0:5.2,
which is expected to be important in understanding the chain
dynamics of entangled melts.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: s.y.reigh@fz-juelich.de; doyoon@stanford.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Roland G. Winkler and Wolfgang Paul for helpful
comments and discussions and the National Research
Foundation of Korea for financial support. D.Y.Y. also thanks
Alexander von Humboldt Foundation for the financial support
that allowed an extended visit to Germany to complete this
work.

■ REFERENCES
(1) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed.; W.
H. Freeman and Company: New York, 2002.
(2) Grosberg, A. Y. Polym. Sci., Ser. C 2012, 54, 963.
(3) Meaburn, K. J.; Misteli, T. Nature 2007, 445, 379.
(4) Vettorel, T.; Grosberg, A. Y.; Kremer, K. Phys. Today. 2009, 62,
72.
(5) Robertson, R. M.; Smith, D. E. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 4824.
(6) Roovers, J. Macromolecules 1985, 18, 1359.
(7) Mckenna, G. B.; Hadziioannou, G.; Lutz, P.; Hild, G.; Strazielle,
C.; Straupe, C.; Rempp, P.; Kovacs, A. J.Macromolecules 1987, 20, 498.

(8) Kawaguchi, D.; Masuoka, K.; Takano, A.; Tanaka, K.; Nagamura,
T.; Torikai, N.; Dalgliesh, R. M.; Langridge, S.; Matsushita, Y.
Macromolecules 2006, 39, 5180.
(9) Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen,
W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Nat. Mater. 2008,
7, 997.
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